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ABSTRACT:

The design of linear networks to satisfy frequency domain per-

formance specifications is formulated as a problem in nonlinear

programming. Three optimization algorithms, pattern search, gradient

projection, and the Fletcher-Powell method, are applied in conjunction

ith the network analysis program CALAHAN to the solution of the non-

linear programming problem. Examples which illustrate the range of

application of the design programs are presented.
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1. INTRODUCTION

The recent development of several digital computer programs for

the analysis of electrical circuits has added a new dimension to pro-

cedures for designing networks. These network analysis programs have

the capability to calculate time and frequency response data from a

topological description of an electric circuit. The response data

generated can be used by the designer to alter the network parameters

and configuration until a satisfactory design is achieved. If this

approach to network design is followed, it is important to have a

digital computer operating mode with minimal turn-around time so that

the designer can observe the effects of parameters changes and proceed

to an acceptable design in an efficient manner.

An alternative approach is to use a digital computer program to

make design decisions. When this is done, a network analysis program

supplies performance data which is used to alter the network parameters

in a systematic way. The parameters are adjusted to minimize a per-

formance measure; the performance measure (or objective function) is

a function which indicates the deviation of the network response from

the desired response. Minimization of the performance measure (or

optimization) can be carried out by any of several computational

algorithms.

Regardless of whether the design is performed by repeated analysis,

or by optimization, the computer-aided approach offers several

advantages over classical design procedures, e.g. Darlington synthesis,

Brune cycle, etc. In computer-aided design procedures, parameter

constraints, nonlinearities, and parasitic effects can be included.

The design of a network of specified complexity whose response approxi-

mates a desired response can also be carried out. In addition, compu-

tations can be performed using the physical design parameters, such as

transistor base width, or a film thickness in an integrated circuit, as



the variables. References 1-4 provide a good summary of the

state of the art of computer-aided network design.

The investigation reported here has been limited to the design

of linear networks in the frequency domain. Three optimization

algorithms have been used in combination with the network analysis

program CALAHAN to solve several example problems,



2. NETWORK DESIGN AS A NONLINEAR PROGRAMMING PROBLEM

The basis for computer-aided network design by the use of

numerical optimization procedures is the formulation of the design as

a problem in nonlinear (or mathematical) programming. A nonlinear

programming problem is one in which a function J (the objective

function) of r variables p , p^, ..., p is to be minimized (or

maximized) subject to constraining relations of the form

g^P^ •••> Pr
) > , i = l,2,...,m . (1)

To simplify the notation, vector-matrix symbols will henceforth be

used, that is, p

_

)

, and (1) can be written

g.(p) > , i - 1,2, ... ,m ,
(la)

or, simply

g(p) ^ , (lb)

where

g(p) -

g
x
(p)

g
2
(P>

The set of points which satisfy all of the constraints given by (1) is

called the feasible set . The constraints in (1) that are satisfied

with the equality holding are said to be active .
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The feasible set is assumed to be a closed, bounded, and convex

set, and the objective function is assumed to have continuous second

partial derivatives with respect to the components of p.

In the network design application, the objective function J

provides a measure of the deviation of the network frequency response

from the desired frequency response, and the variables are a set of r

network parameters p , p„, ..., p . In general, the performance

measure will be assumed to have the form

N

J(p) = E h(G(f.), G
D
(f.), f.) (2)

i=l

where f.(Hz), i = 1,2,...,N, is a set of frequencies for which the desired

response is specified, G (f.) is the desired response at f = f.,

and G(f.) is the response of the network at the frequency f.. The

scalar function h satisfies the following properties:

1. h > 0, for all G(f ), G (f ) , f , i = 1,2,... ,N (3a)

2. h = 0, only if G(f.) = Gff.) (3b)
l D l

In the example problems discussed subsequently, the performance

measured used was

N

J(p) = E w.[20 4og
10

|G
D
(f.)| - 20 4og

1()
|G(f.)1] (4)

i=l

where the w. are positive numbers called weighting factors. By

inspection of (4) it is observed that the larger a particular w. is,

the larger the value of J for a given response deviation; hence, by

adjusting the w.'s the actual response can be made to conform more

closely to the desired response at certain frequencies at the cost of

larger deviations at other frequencies.

In this investigation the constraints considered were restricted

primarily to the form

3
i

" P
i

~ b
i '

i = l
>
2 >"-> r

• (5)



where a and b. represent the lower and upper bounds for the ith11
parameter. These constraints can be put into the form of (1) by

defining

§1^>
—

P
L '

3
1

>

g
2
(p)

=
"Pl + b

l
"

82r-l ( P>
=

Pr - a
r * °

g 2r (p) = "Pr
+ b

r
> (6)

For some of the optimization algorithms considered, extension to other

types of constraints is a routine matter; this will become evident in

the subsequent discussion.



3. SOLUTION OF NETWORK DESIGN PROBLEMS

To design a network by using the procedures described here the

designer must first select the configuration of the network. Some

investigators have reported the incorporation of logic into design

programs for "growing" network elements, but this investigation did not

include this possibility.

After specifying the network configuration, a performance measure

and any weighting factors must be selected. The desired frequency

response characteristic must be specified either in the form of a table

of values, or as an analytical expression that can be included in the

program.

Once these preliminary steps in the design procedure have been

completed, and the necessary data has been provided for the combined

analysis-optimization program, the design parameters are adjusted by

the computer program until the performance measure is minimized. The

network analysis program provides frequency response data to the

optimization program which then adjusts the variable parameters in a

systematic way until the minimum is found. The nature of the data

that must be provided by the analysis program depends on the optimiza-

tion algorithm being used. Generally, the network analysis program

will be required to provide either values of J only, or values of J

and the first partial derivatives of J with respect to the elements of

A flow chart of the computational procedure is shown in Figure 1.

It should be noted that although this flow chart and the procedure

outlined are for frequency-domain design, they apply aiso to design

in the time domain by replacing the work "frequency" by the word "time",

The time response, however, would be calculated within the network

analysis program in a different manner than the frequency response.



Yes

Initialize the programs and read

input data including the initial

guess for the variable parameters

Adjust the network parameters

Use the network analysis program

to calculate the frequency response

of the network

Print out optimum parameter

values, graph response if desired

Figure 1 Flowchart of the computational procedure



4. THE NETWORK ANALYSIS PROGRAM

There are many network analysis programs that have been written.

Most of these programs are available from the authors or from the

sponsoring agencies. A few of the more widely known analysis programs

are CALAHAN, SCEPTRE, ECAP, CORNAP, and NASAP. In this investigation

the program CALAHAN has been used exclusively because:

1. It is well documented and hence easy to use.

2. It provides both time and frequency response data for linear

networks (including networks with dependent sources).

3. The program is compatible with the IBM 360/67 in use at the

Naval Postgraduate School.

Experience has indicated the CALAHAN is adequate for use with the

optimization programs employed; however, it is clear that modifications

could be made which would make the program operate more efficiently

when used in an iterative mode. This comment will be amplified after

reviewing the use of the CALAHAN network analysis program.

To use CALAHAN, a topological description of the network and

numerical values for its parameters must be provided as input data to

the program. The network to be analyzed is considered to be in the

form of a two-port black box as shown in Figure 2. One of the user

options in CALAHAN is the selection of the network function of interest;

+

v
L
(t)

o

Linear
Network

i
2
(t)

I
+

v
2
(t)

Figure 2 Two-port network



the choice is made by specifying the input parameter KEY 1. The alter'

natives are shown in Table 1.

KEY 1 Network Function Symbolic

1 Voltage transfer function V
2

V
l V-o

2 Open circuit driving point
impedance

r2-°

3 Open circuit transfer
impedance

V
2

i
a
-o

4 Short circuit driving point
impedance

X
l

V
l

v
2
-o

5 Short circuit transfer
admittance

V
l

v
2

=

6 Current transfer function

v
2

= o

TABLE 1. Network function options

The other input data that must be provided to the modified version of

CALAHAN is:

1. The number of passive (RLC) elements.

2. The number of controlled sources (current sources that are

voltage controlled).

3. The number of nodes.

4. The positive input node.

5. The negative input node.

6. The positive output node.

7. The negative output node.

8. KEY 1



9. The location, element type, and value of each of the network

parameters

.

10. The frequency response data.

Items 1 through 9 are placed on a single data card according to the

format (12, IX). Item 9 is provided by supplying one data card for

each element; this data card contains the node numbers at the ends of

the element, the element type, and the element value according to

the format (2(12, IX), Al, IX, F10.0). The information for Item 10 is

provided on two cards: the first card, which is read according to the

format (II, IX, 13) , contains a 1 or 2 in column 1 depending on whether

a linear or logarithmic frequency scale is desired, and columns 3

through 5 contain either the total number of frequency intervals

(for a linear scale), or the number of points per decade (for a log

frequency scale); the second card, which is read according to the

format (2F10.0), contains the smallest and largest frequencies.

Figure 3 illustrates a circuit diagram and the input data to compute

the frequency response V
2
(f)/V.(f) for f = 0.150 Hz. to f = 0.250 at

intervals of \f = .001 Hz. The "output" data that result in this

example are the values of V (f)/V (f) for f = 0.150, 0.151, ..., 0.250.

The unmodified version of CALAHAN provides additional data, including

the poles and zeros of the network function, and plots of magnitude

and phase versus frequency; however, since this information is not

desired when the analysis program is used in an iterative mode, it

has been eliminated from the program.

As mentioned previously, the use of CALAHAN with an iterative

optimization algorithm is somewhat inefficient. The reason for this

is that each time CALAHAN is called, the tree-generating subroutine

begins as if a new network were being analyzed. As a result, a

disproportionate amount of time is spent generating information that

could be computed once and stored.

10



rrr\

V.

"3

_fY-r\
5

R v.

L = 1.5451 H.

L„ = 1.3820 H.

L r = 0.3090 H.

C
2

= 1.6944 F.

C. = 0.8944 F,

R = 1.0 ft

(a) The circuit diagram

|
Columns

|
Columns

|
Columns

! 1 - 10 I 11 - 20 I 21 - 30

Card # 9

Card # 8

Card # 7

Card # 6

Card # 5

Card # 4

Card # 3

Card # 2

Card # 1

J 1

1

fb.150 b.250
1 1

/ 11 100 |

1

^[05 02 R 1.0
!

/ 04 05 L 0.13090
|

|

/j04 02 C 0.18944

' 03 04 L l.|3820 j

' !03 02 C lj.6944
1 1 '

^!01 03 L lj5451 '

^06 00 05 dl 02 05 02: 01

(b) The input data

Figure 3
11



5. THE OPTIMIZATION ALGORITHMS

Three optimization algorithms have been combined with CALAHAN

(in separate programs) to perform optimal design of linear networks

in the frequency domain. A description of these optimization

algorithms follows.

5 . 1 The Gradient Projection Method

The gradient projection algorithm, developed by J. B. Rosen

(see reference 5) determines the minimum of a function of several

variables which are constrained to lie in a closed and bounded convex

region R in the parameter space P. R is defined as the interior of a

convex region bounded by a set of linear constraints. A detailed

exposition of Rosen's method is given in reference 5 and also in

reference 6. Here, a brief description of the important features of the

algorithm will be given.

The algorithm is, as the name implies, a gradient search, but

with the capability of solving problems in which the variables are

constrained. The version of Rosen's algorithm that has been used in

this investigation assumes that the constraints are linear, that is,

T

N,P - v £ , (7)

where N. is a known r x I matrix, p is the vector of r variable

parameters, v. is a known vector of I constants, and the superscript T

denotes matrix transposition. By selecting I = 2r and

•5*
=& i

4]

an
a
2

Zi
=

a
r

-b
i

" b
2

•
•

-b
r
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the formulation in (7) yields the special case given in (6).

The performance measure J is minimized subject to the constraints

given by (7). The strategy employed in the search procedure is to move

in the direction of steepest descent (the negative gradient direction)

in the parameter space so long as the function values decrease and

none of the constraints are violated. If a move in the negative

gradient direction would cause one or more of the constraints to be

violated, the negative gradient is projected onto the constraint

boundary at the point where the constraint violation would occur.

This projection of the negative gradient is accomplished by a q x q

projection matrix P ; q is the number of constraints in (7) that

are active (satisfied with the equality).

The projection matrix is formed from the columns of the matrix

N which correspond to active constraints. The active constraints can

be written as

where v is formed by selecting those entries of v. which correspond

to active constraints. The projection matrix is given by

P„ = I - N [N
T

N ]

_1
N

T
(9)

~q „ ~q ^q ^q-J _q

The algorithm is carried out in such a manner that P can be computed

by using recurrence equations that do not require inversion of the

T
matrix TN N 1; this feature provides a tremendous computational

~q ~q J

saving. If the current best point does not lie on the boundary, but

within R, then P is the identity matrix.

(i) ^
If p is the current best point the next parameter vector is

given by

p(i+D = p(i)
+ ^q

[-oJ(X
(i)

)/^p]/||SJ(^p
(i)

)%|| (10)

where j (the step size) is calculated by using an interpolation

procedure or a single variable search.

13



To illustrate how the gradient projection algorithm operates, a

simple example is shown in Figure 4. In this example the constraints

are given by

o <
?i

< 1

* p
2

^ 1 , (ID

or

1

10-1 (11a)

Several equal-value contours of the function J are shown in Figure 4

and R is the region bounded by these constraints. Noffeice that R is a

convex set because every point on a straight line drawn between any

two points in R is also in R.

If p' is the first trial point, then z is the unit vector in

the negative gradient direction and a move is made to the boundary point

p^ ' on the line H, . At p^ , moving in the negative gradient direction

would violate the constraints, so a move is made in the direction of

the vector z (a unit vector in the direction of the projection of

the negative gradient at p onto the line H, ) . Moving in this

direction yields p where further motion in the direction of z

would violate the constraint p_ < 1. Repeating the steps used earlier

provides the information that no improvement can be made by moving from

(2)
p

v '\ hence, the iterative procedure terminates.

This algorithm has been coded in FORTRAN IV by the principal

investigator; in reference 7 a description is given of the combined

operation of CALAHAN and the gradient projection algorithm.

Two features of the CALAHAN - gradient projection program are of

special interest.

1. The gradient projection algorithm requires not only values of

J, but also the partial derivatives of J from which the

14



J (i)
< J<

k
>. for i >k

Figure 4 Geometric interpretation of the gradient projection

algorithm
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negative gradient vector is formed. These partial derivatives

were approximated by a finite difference approximation, that

is

SJ
J(P

1
,P

2
,. • • ,Pj+A, ...,Pr ) - J(P

1
,P

2
» • •

•

»Pj» • • • >Pr )

5^ (£> "
I

Using this approach, (r+1) network analyses are required to

evaluate the gradient vector at the point p.

2. The interpolation scheme for finding the step size t suggested

in reference 5 requires additional evaluations of the gradient

vector. Because the gradient calculation is costly in terms

of the number of calculations, an alternative approach was

adopted in which only the values of J were needed. In addition

to proving more efficient in this application, this single

variable search procedure alleviated difficulties believed to

be caused by the occurrence of local minima.

Reference 7, in addition to describing the combined operation of

the programs, also provides several examples which illustrate appli-

cations .

5.2 The Pattern Search Method

Unlike the gradient projection method, which requires the first

partial derivatives of J with respect to each of the variable parameters,

the pattern search algorithm, reference 8, requires only values of the

function J. Perturbations in the elements of the parameter vector p

are used to determine the direction of a change in p which decreases

the value of J. The perturbation data, which provides local information,

is then used to suggest larger changes in p which should further

decrease J. These larger changes in p are called pattern moves. The

algorithm alternates perturbation moves (or local explorations) with

pattern moves. Each time a successful pattern move occurs, the step

size of the following pattern move is increased; thus, continued

successful pattern moves cause future moves to become larger and larger.

When a pattern move eventually fails, the pattern is destroyed and the

16



algorithm attempts to begin generating a new pattern. The search

terminates when an exploration move cannot decrease the function, and

the perturbation step size has been reduced to a value below a

pre-selected minimum.

Figure 5 illustrates a simple two-parameter problem whose solution

indicates the steps followed by the pattern search algorithm. The

figure shows the two-dimensional parameter space and several equal-

value contours of J.

At the initial trial point, b , the function J is evaluated, and

this value is denoted by J(b ). The parameter p is perturbed by an

amount + Ap and the function value increases, indicating a failure,

so p 1
is perturbed by - APi and the function value decreases (a success)

(1)
from its value at b . Perturbation of p by an amount Ap 9

further~
(2)

decreases the function and yields b as the current best point.

Using the rationale that further perturbations would likely result in

the same pattern of successes, the next move is to the point t ,

where

t<
X
> = b

(1 > + 2[b<
2)

- b
(1)

] . (13)

Notice that the function is not evaluated at t unless all

perturbations about t produce values of J greater than J(b )
--

which does not occur for the geometry of this example. The iterative

procedure continues in this manner with perturbation cycles and pattern

moves alternating. The pattern moves are determined by using the

equation

_t
(i) =b (1) +2[b (1+1) -b (1)

] (14)

Several additional moves are also shown in Figure 5.

As mentioned previously, the pattern moves continue to increase

in length as long as successes occur. If a failure occurs on a pattern

move [all perturbations about t produce values of J larger than

^(l+l)^
and j( t

( L )) > j(b^
1+

'
)

)], then the pattern is destroyed.

17



J
(i

> < J
(k >

for i > k

(2)

Figure 5 Geometric interpretation of the pattern search algorithm
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When it becomes impossible to make successful perturbation moves from

a current best point, the perturbation step size is decreased by a

specified amount. When the perturbation step size has decreased below

a pre-specif ied level, the iterative procedure terminates.

The pattern search method is available as subroutine DIRECT in the

Naval Postgraduate School Computer Facility FORTRAN Library. In

reference 9 a description is given of the combined operation of CALAHAN

and the pattern search algorithm. The version of pattern search reported

in reference 9 was modified to incorporate constraints of the form

a. < p. ^ b. , i = 1,2,... ,r (15)

in the algorithm. Reference 9 also presents several network design

examples

.

5.3 The Fletcher-Powell Method

The Fletcher-Powell method, reference 10, is basically a gradient

method; however, unlike other gradient techniques, the convergence of

the algorithm becomes more rapid as the minimum is approached. The

reason for this is that the gradient vectors calculated in the iterative

procedure are used to generate an estimate of the matrix of second

partial derivatives. As the procedure evolves, the estimated matrix

of the second partial derivatives approaches the actual matrix of

second partial derivatives and the convergence of the algorithm becomes

quadratic.

The motivation for this approach is provided by considering the

>r series expansi

of up to second order

Taylor series expansion of J about the point p which includes terms

- P
(i)

]<E
(i+1)

) <.
(1)

) [|

G

(1)

)J
i

+
\ [p

(1+1)
- z

(i)

]

T

fi d
a)
) [i

(i+1)
" £

(l)

'

(16)
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where

hJ bJ

dPj BP
2

*P,

denotes the gradient of J with respect to p, — (p ) is the

2

gradient vector at the point p and —s- (p ) is the matrix of

second partial derivatives

*Pi'

s
2
j

b
2
j

^Pr
Sp

L

3
2
J

BP
L
BP

2

Bp
2
^P

1
Sp

2

'

a
2
j

BP
r
dp

2

(i)

,
2
J

Bp
L
^Pr

8
2
J

9p
2
s P

r

B
2
J

*P,

evaluated at the point p

The point p is known (initially it is a guess) and the point

p is to be found. The gradient of J with respect to p is

dj/ (i+l)>

3FU J *P

BJ f (i)\ S J MO+

^P
P " P , (17)

, .. (i+1) . . . . . ...
and if p is to be the minimizing point, it is necessary that

I ^
(i+0

)
== . (18)

20



Hence,

P " P
1

fAz
W)'^W

(i+1)

Q" 1
grad J

(i)

(19)

This equation suggests that to find p the change in p should not

be in the negative gradient direction (this would be the case if the

matrix of second partials were the identity matrix), rather a deflected

gradient should be used. If the matrix of second partials Q (the

Hessian matrix) were known, Equation (19) could be used as the basis

for an algorithm having quadratic convergence. Unfortunately, when

an explicit relationship for J in terms of p is not known, as will be

the case in computer-aided network design applications, the

2 2
computation of ^ J/dp is very difficult, and attempting to find the

matrix of second partial derivatives by perturbations often leads to

inaccurate results.

In the Fletcher-Powell Method, the gradients themselves

are used to obtain an estimate of Q. For a function J that is quadratic

in p (equation (16) is exact), the algorithm converges in r iterations,

where r is the dimension of p.

The iteration equation used is

p
(i+D = p<i>-

T tt
<i>

grad j<« (20)

where t is the step size which is determined by performing a single

variable search. The single variable search in the subroutine being

used involves first an extrapolative phase, during which the value of

t which makes J the smallest along the line in the deflected

gradient direction is bracketed, and an interpolation phase, during

which the minimizing value for t is determined.

The Fletcher-Powell Method as described is capable of solving

unconstrained minimization problems; however, in the class of problems

of interest here the variable parameters will be required to satisfy

constraints. To allow application of the Fletcher-Powell Method some

way of incorporating the constraints must be found. One way of

21



handling constraints is to use penalty functions; the performance

measure J is altered by some additional terms which depend on the

constraints. Intuitively speaking, the terms in the altered performance

measure, J , that correspond to the constraints should be large if the
3

constraint boundaries are being approached and small if the parameters

are within the region where the constraints are satisfied.

To be specific, assume that the constraints are of the form

g.(p) > 0, i = 1,2,. ..,m. (21)

As usual, it is desired to minimize J. The method used is to form the

altered performance measure (devised by Fiacco and McCormick, reference

11)

1
J (P) - J(P) + R S —7-r . (22)s~ ~

i=L g
i
(.p;

R is a positive constant.

If the initial point lies in the interior of the feasible region,

i.e., where

g.(p) > 0, i = 1,2,. ...td , (23)

then if the iterative procedure adjusts p to a value near the

boundary, J approaches infinity because at least one of the g. terms

approaches zero. In this manner the penalty term

1
R E

1-1 g
i

( P }

tends to keep the values of p within the admissible region. If R is

allowed to become very small, and the constrained minimum lies on the

boundary, the value of p found by minimizing J will approach the true

minimum point p*.

To illustrate the Fiacco-McCormick procedure, the following

example is presented. The function to be minimized is

22



J(P) - P (24)

and the constraints are

1 < P ^ 2 . (25)

Putting this constraint in the form of equation (21) gives

g
L
(p) = p-1 >

g
2
(P)

= 2- P '- ° »

hence

J = p + R ,

a I p-1
+

2-P

(26)

(27)

Plots of J as a function of p for two values of R are shown in
a r

Figure 6.

Generally, the minimization procedure is performed several

times with decreasing values of R. It can be shown (reference 10)

that doing this generates a sequence of points which converges to p*

(provided that J meets certain mathematical requirements).
3.

In combining the Fletcher-Powell and Fiacco-McCormick procedures

with CALAHAN it has been assumed that the constraints are of the form

given in equation (6), thus,

and

J (p,R) = J(p) + R S
j= l

hJ

1

p. -a.
J J

+
1

•p.+b.
J J

(28)

OP.

(i)
+ R

-1 1

(P
(i)

V c-p^ + V
2

(29)

where p. is the jth component of the vector p.

The Fiacco-McCormick approach has been combined with the Naval

Postgraduate School Computer Facility's version of the Fletcher-

Powell algorithm (subroutine FLAP) and CALAHAN. Several modifications
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Figure 6 The augmented
performance measure, J ,
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for two values of R
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have been made to improve the operation of the combined program. One

of these modifications ensures that p is never adjusted to lie out-

side of the feasible region. Such an adjustment can occur in the

Fletcher-Powell method during the extrapolation phase of the procedure
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6. ILLUSTRATIVE EXAMPLES

In this section two numerical examples will be presented. The

three optimization techniques discussed previously were applied to

these examples to provide a basis for comparing the algorithms.

Although these examples have networks with only passive elements, the

programs are also capable of optimizing linear networks containing

active elements. References 7 and 9 present several additional

example problems, including some witi non-ideal network elements.

Example 1. The problem is to determine the reactive element values

in the network shown in Figure 7 so that the frequency response

+ 1 o- L_nnr\
L

4 _rm
L r

-o +

2o-

1.0 Q

Figure 7. Fifth-order low pass filter

minimizes the performance measure

10

J = S [20 jtog
10

|G
D
(f.)| - 20 £og

10
|G(f.)l] .

i = l

(30)

G(f) = Vc-^ (f ) /V. ~ (f ) is the actual frequency response and the desired

frequency response characteristic is given by

w =

vTiT
(31)

(2TTf.)
2N

where N = 5. This desired response is the Butterworth response

characteristic for a fifth-order filter; if the element values

in the network shown in Figure 7 are

26



L = 1.545 H 1.694 F L^ = 1.3820 H C, = 0.8944 F
3 4

Lj. = 0.3090 H the desired response characteristic will be

obtained exactly. The frequencies used were f = .15 Hz., .16 Hz.,

... , .24 Hz.

The results obtained are summarized in Table 2. Although the

Gradient
Pattern Search Projection Fletcher - Powe 1

1

Fifth-Order Initial Final Initial Final Initial Final
Butterworth Value Value Value Value Value Value

Value

L
l

1.545 1.600 1.540 1.000 1.557 1.600 1.475

C
2

1.694 2.000 1.700 2.400 1.478 2.000 1.800

L
3

1.382 1.500 1.380 1.100 1.695 1.500 1.312

C
4

0.894 0.900 0.895 0.900 1.064 0.900 0.877

L
5

0.309 0.500 0.307 1.000 0.500 0.500 0.242

Table 2 Element values for fifth-order low pass filter

element values obtained by the pattern search and Fletcher-Powell

algorithms differ significantly from the Butterworth values, the

frequency response curves obtained are almost identical with the desired

frequency response curve. The frequency response results obtained from

the gradient projection method are shown in Figure 8.

The Fletcher-Powell method took eighteen iteration cycles to

determine the values given in Table 2. [An iteration cycle is defined

as a minimization of J for a specified value of the factor R in Equa-

tion (22)]. If the algorithm operated as anticipated, one iteration

cycle should have been sufficient to obtain convergence. The

slowness of convergence is attributed to the relative insensitivity

of the performance measure to variations in the parameter values;

this means that near the minimum the gradients calculated by the

perturbation method are likely to be too inaccurate to obtain the

expected convergence properties of the algorithm.

27



I Gain
(db)
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0.05 0.10 0.15

Desired

Actual

- f(Hz)

Figure 8 Actual and desired frequency responses
for low pass filter

Example 2. The reactive element values in the network shown in Figure 9

In L
1

OLr •U—i—lh

L
3

Or

nj 1
' I R=lQ V,

Figure 9 Bandpass filter configuration
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are to be determined to minimize the performance measure

J = S [20 iog
10

|G
D
(f.)| - 20 £og

10
|G(f.)|]'

where G(f) - V
2
(f)/V

1
(f) and 20 Xog

1Q
|G (f .) | is the bandpass filter

response shown in Figure 10; a tabulation of the gain values on the

Gain
I

(db)

-6

-8 -

-10 --

Desired

Actual

f
0.12 0.46 0.80 (Hz)

Figure 10 Actual and desired bandpass

filter frequency responses

desired frequency response curve is contained in reference 9.

The element values obtained by the three algorithms are contained

in Table 3.

The performance of Fletcher-Powell method was less successful

than in Example 1. The values in Table 3 were obtained in one

iteration cycle, but correspond to a performance measure of J = 175.8.
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Gradient
Pattern Search Projection Fletcher -Powell

Initial Final Initial Final Initial Final

Value Value Value Value Value Value

L
l

0.500 0.278 1.000 0.231 0.500 0.193

c
l

1.200 0.968 1.200 1.140 1.200 1.213

L
2

0.750 0.512 1.000 0.520 0.500 0.433

C
2

0.750 0.500 1.000 0.485 1.200 0.988

L
3

0.500 0.231 1.000 0.237 0.750 0.050

C
3

1.200 1.070 1.200 1.140 0.750 0.737

Table 3 Bandpass filter element values

By contrast, the performance measure which corresponds to the pattern
-fci

search values is of the order of 1 x 10

The frequency response curve obtained for the gradient projection

element values is shown in Figure 10.
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7. CONCLUSIONS

Three optimization techniques have been combined with the

network analysis program CALAHAN and used to solve several illustrative

examples. Although the examples contained only networks with passive

elements, the programs are capable of optimizing linear networks with

active elements. Of the three methods pattern search seems to be

most effective; however, it is believed that this conclusion is

mainly due to the finite difference approximation used for the

gradient in the other two algorithms. The finite difference

approximation is also believed to be responsible for the difficulties

encountered with the Fletcher-Powell algorithm.

To improve the efficiency of the computational procedures several

modifications could be made. First, the network analysis program

should be altered so that once the appropriate network trees are

calculated, they should be stored instead of being re-computed each

time the analysis program is called; this change should reduce the

required computation times significantly. Second, the gradient

vector should be calculated by using formulas rather than by using

a finite difference approximation. This modification should make

the gradient projection and Fletcher-Powell algorithms far more

efficient. Finally, investigation of techniques for altering the

network configuration as well as its element values should broaden

the class of problems for which these computer-aided design methods

are useful.
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